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LE’ITER TO THE EDITOR 

Rigorous bounds on eigenvalues of two-electron atomic 
Hamiltonians 

H Hogrevet 
Centre de Physique ThboriqueS, CNRS, Luminy Case 907,13288 Marseille Cedex 9, France 

Received 24 March 1988 

Abstract. Upper and lower bounds on the first two energy levels of atomic two-electron 
systems within various symmetry sectors are calculated. These bounds are mathematically 
completely rigorous because no uncontrolled numerical approximations are involved. The 
explicit and simple form of these bounds allows their application as input for further 
analytical manipulations. Examples of such applications are given for the problem of level 
ordering and the absorption of bound states into the continuum. 

In the non-relativistic Schrodinger theory helium-like two-electron systems are 
described (in the infinite nuclear mass limit) by the Hamilton operator 

H ( Z ) = C  ---- +- 
i = l  ( :i :) rt2 

(atomic units, r I 2 :  = (rl  - r21) acting in the Hilbert space given by the antisymmetric 
tensor product ( L2( 92’) 0 V2)OA( L2( 92’) 0 %’). The Hamiltonian H commutes with 
the total orbital angular momentum L = L1 + L 2 ,  the total partity P = PI P2 and each 
of the two spin operators S,  , S2 . Therefore, the bound states of H are usually classified 
into the different symmetry sectors ”+‘L in which each state is characterised by its 
quantum numbers L and S. 

The Schrodinger equation for (1) constitutes certainly one of the most intensely 
studied problems in the theory of atoms; consequently, for (1) also the most accurate 
approximations are available. In case of the helium atom approximate energies of its 
lowest states have been computed (Frankowski and Pekeris 1966, Kono and Hattori 
1984, Freund et al1984, Baker et a1 1987) up to a precision including 14 or 15 significant 
digits and which are believed to be of some orders of magnitude more ‘accurate’ than 
the experimental data. But at this point the question of the meaning of ‘accuracy’ 
arises. Approximate values for which no strict error bounds are available may be 
useful for heuristical considerations; however, to employ them for establishing general 
theoretical statements would of course be a rather doubtful procedure. 

The problem of bounding the eigenvalues of H includes two aspects. The first one 
is the theoretical derivation of the bounds, and the second involves their appropriate 
numerical realisation. For instance, variational computations of atomic energy levels 
should provide upper bounds to the exact values. But, on the other hand, the numerical 
procedure employed may be so complex that during the evaluation process round-off 
and other numerical errors add up in such a way that the final result actually lies 
below the true value. Although one could argue that on the average numerical errors 
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tend to cancel each other, from a rigorous point of view such a situation is rather 
unsatisfactory. In particular, this type of result cannot be used for the derivation of 
mathematically rigorous statements. 

This letter is intended as a first step to overcome the unsatisfactory situation 
described above. Our aim is to provide bounds on various energy levels of (1) which 
are not only mathematically rigorous and simple enough to be applicable for further 
analytical calculations, but also sufficiently sharp to be useful for deriving non-trivial 
qualitative results. 

In fact, our bounds are mathematically rigorous because they are derived without 
any uncontrolled approximation. Although done on a computer, all calculations have 
been performed with the help of the symbolic calculus REDUCE. Due to the capability 
of REDUCE to handle integer arithmetic with arbitrary precision (Hearn 1985), and 
because all steps and estimates contain only rational manipulations, the final results 
are either exact or based on completely rigorous estimates. 

Such estimates are in general necessary to achieve our second goal, namely sim- 
plicity. As it turns out, the exact values are fractions with numerators and denominators 
containing up to 90-digit integers. Since such quantities are of course not very 
practicable for further calculations, and since they themselves are already bounds, we 
have estimated them further by rational expressions which are subject to the condition 
that the denominator contains at most three digits. Compared with the sharpness of 
the exact bounds, these additional estimates do not induce any significant loss of 
accuracy. For the helium atom our bounds differ by less than a few per cent from 
those approximate values mentioned before and obtained via extensive numerical 
computations. 

In the following we shall derive bounds on the two lowest energy levels E l ,  E2 
within fixed symmetry sectors, El  s E2 S. . . denoting the ordered sequence of elements 
of the discrete spectrum of H restricted to the respective symmetry subspace. Some 
of these bounds have been computed numerically before (Grosse et a1 1978, Thirring 
1981). If we convert our rational expressions into floating point numbers, they agree 
with those already existing bounds and thus provide a sound justification of them 
which should also satisfy a mathematical purist. 

To derive lower bounds on the E, we employ the well known method of intermediate 
operators (Weinstein and Stenger 1972). It rests on the fact that if P is any projector 
in the considered (sub-)space, then as operators r;: 2 r;;’2Pr;:’2 and consequently 
HLB: = H B +  , . ; ; / 2 ~ ; ; / 2  is a lower bound operator on H, i.e. HLBS H. The ordering 
theorem then implies that the ordered sequence of points of the spectrum of HLB 
provides lower bounds for the spectrum of H, that is E b B S  E, for i = 1,2, .  . . . Here 
HB is the operator of the associated ‘base problem’ 

H B ( 2 )  = (----) Ai  Z 
i = l  2 ri 

which is of hydrogenic type. Its eigenfunctions +: and eigenvalues E can be expressed 
in terms of the usual hydrogenic functions &,, (associated with the quantum numbers 
n, 1, m )  and hydrogenic energies (Balmer formula). 

For the projector P we will adopt the choice introduced by Basley and Fox (1961, 
1962), i.e. we take 
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where the matrix elements M b  of the matrix M‘ serve as the normalisation coefficients. 
ML is the inverse ML= W-’ of the matrix W whose elements are given by W, = 
(+:, rI2+:). With this choice of P, for a given N < 00, the resulting HhB acts non-trivially 
only in an N-dimensional subspace. Therefore, for N S 4, in principle it is possible 
to obtain explicit expressions for its eigenvalues. For N = 3 or N = 4 this requires the 
computation of the roots of a polynomial of third or fourth degree and leads to 
unnecessary complex expressions without increasing the quality of the bounds sig- 
nificantly, and so we will use here only one- and two-dimensional projectors. Thus, 
lower bounds follow which in the one-dimensional case are of the form 

E , ( Z )  3 min{ E y ( Z )  + Z/  Mk,, E : ( Z ) } .  (3) 
A two-dimensional projector yields 

where 

and 

In the above formulae (3)-(5) we have extracted the Z dependence from the base 
energies E 1 and matrix elements M b  and have written the corresponding Z variables 
explicitly, i.e. the E: and M b  refer to a base problem ( 2 )  with Z = 1. The minimum 
in the lower bounds is a consequence of level crossing. As Z varies, there exist Z,,,,, 
such that for Z 6 Z,,,,, the lowest base level arising from the already diagonal part of 
HLB is smaller than the level(s) from the non-trivial part. 

Upper bounds on the E, are obtained as a consequence of the ‘minimax theorem’ 
(Reed and Simon 1978) by diagonalising H within a subspace of sufficiently high 
dimensions. Here, in connection with the corresponding lower bound problem, we 
choose subspaces spanned by the symmetry adapted base functions +: of (2) (cf table 
1). Again, explicit expressions follow easily in the one-dimensional situation 

E , ( Z )  =s EYZ2+ M:,Z ( 6 )  
and the two-dimensional situation 

E , ( Z )  Q &U(Z) E2(Z)  Q &,U(Z) 

Table 1. Base functions and eigenvalues for the various symmetry sectors. 

(7) 
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where E: are constructed analogously as 
(+by ,  r;j+by) instead of Mk.  Our results are summarised in the following theorem. 

but contain the matrix elements M y =  

Theorem 1 .  For all positive Z the lowest energy levels of (1) restricted to the symmetry 
sectors 'S, 'P, 3S, 3P or (3P)unn, are bounded by (3)-(7) where the respective constants 
are given in table 2 (one-dimensional bounds) and table 3 (two-dimensional bounds). 
In particular, if Z 2 Zcross, due to the concavity of - ( - E l ( Z ) ) " 2  (Narnhofer and 
Thirring 1975) the linear one-dimensional bounds can be sharpened to parabolic ones 

EF(Z - 2,)'s E , ( Z )  EF(Z - 2,)' (8) 

with the Z,, 2, of table 2. 

ProoJ: We sketch the procedure for the 'S symmetry, i.e. parahelium with vanishing 
angular momentum. First note that if E 2 ( Z )  or E , ( Z )  does not belong to the discrete 

Table 2. Parameters of the linear and parabolic bounds for one-dimensional projections. 
Here < or > in front of an expression indicates that the exact quantity contains too many 
digits and has been estimated by the given bound according to the rules mentioned in the 
text. In the same way, if two numbers are given for ZcIoss, they represent lower and upper 
bounds, respectively. 

'S 3s 'P 3P (3P)""" 

32 
23 1 522 

128 412 
1841 1453 768 
688,  543 

__ 291 

193 
>U 

137 1204 
613 

785 

834, 475 
133 

,107 
670 

729 
890 1803 
3879 784 

21 - 
8 
128 -- 2351 1339 _ _  ___ - 

M :: 
zero,, 
Z L  

105 

5 21 a 
%(l-& g 825 101 E(1-4) ai5 

515 

- 
193 < L E  

861 
<E 

725 
- Z" 16 

Table 3. Parameters of the bounds for the two-dimensional projections. Except for the 
A, and A,, which are exact, all other parameters are simplified bounds 

IS 'P 3P (3P)"n" 

3 1  
144 

_- 85 
144 

__ 85 
I 4 4  

_- 85 
144 

_- 13 
A I  16 

_- 
(&I2 
71 

B l  849 Ti3 m m 655 

(&I2 
50 34 65 - 

(&I2 
27 1 - 

A 2  

Lower bound, ground state 

C 

Lower bound, first excited state 

3 3 3 2 

- 5 I 2 1 1 
196 m m m i i i  
355 709 - 1133 431 _ -  1293 1823 485 379 m, m 

_- 
877 

_- 
778 

_- 
707 

_- 49 
B 2  859 965 

__ 

_ _  1459 898 
749 > 461 688 I 970 644 1 264 

-- z,,,, 353,705 

2 2 1 1 

2 3 3 1 

_- 
438 

_- 
259 

_- 
47 I 

__ 17 
298 
24 

643 

809 

992 I 476 

_- 
C 941 536 m ;fTs 

B 2  

Upper bound, ground state 
Bl 
B 2  

Upper bound, first excited state 

C m 197 m 521 

B 2  

- - 
253 2160 
8 0 ,  683 

1821 1319 _ -  3249 1559 _ _  1522 2447 _ _  1370 3459 - _  
383 3 967 413 3 664 

145 133 81 m m 777 
3 2 1 _- 1 

393 
I - 3 4 1 

308 m 522 
29 - 

_ _  z,:,,, 740, 536 

- 99 386 - m i  703 
62 

917 841 

C 53 I 266 

40 I 
_- 

237 
_- __ _- 

- 

I 5 4 2 

3 8 5 - 1 

_- 
803 

_- 
949 

_- 
983 

821 

_- 23 
312 
42 

306 
__ 

- - 
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part adi,(H(Z)) ofthe spectrum a ( H ( Z ) ) ,  then we set E2(Z): = inf{a(H(Z))\{E,(Z))} 
and El(Z): =inf{u(H(Z))}. In the 'S subspace the base problem (2) has the solutions 
t,bB = ( 4  l,o,oO s4 i,o,o) 0 (antisymmetric spin part) and the corresponding eigenvalues 
below the continuum E E ( Z )  = -Z2/2 are given by Efi(Z) = -(1+ 1/n2)Z2/2. The 
matrices W and MU can be calculated with the help of our REDUCE procedures 
(Bogdanova and Hogreve 1987): 

- 123 904 8192 

w=( 1!!904 -=) 194481 MU=(A 64 169 827 ) *  
194481 39366 64827 729 

(9) 

Inserting W;: and MYl, the one-dimensional linear bounds follow immediately, and 
the parabolic ones from the general relation (Thirring 1981): 

For the two-dimensional lower bounds we have to invert W. This can be done exactly, 
but already now the number of digits starts to proliferate: 

These M b  have to be inserted into (9, but obviously the resulting lower bound 
expressions E ,  will not be in a form inviting further applications. Hence we will refrain 
from displaying them here, but instead note that in ( 5 a )  the terms B1, B2 and C 
involving a large number of digits can be estimated by 

The estimates (12) can be verified by straightforward calculations; they are motivated 
by our desire to derive simpler but not much weaker bounds. The restriction to fractions 
whose denominators contain at most three digits allows an estimate of the actual values 
such that the difference does not exceed the order of lo-' which is in fact some orders 
of magnitude better than the quality of the estimated bounds themselves. The analogous 
quantities for the upper bounds E: are estimated in the same way. 

The condition of level crossing is equivalent to a linear equation for Z,,,,, and to 
a quadratic equation for Z~,,,,. The roots of them can be determined exactly but 
eventually have to be estimated as above because they may contain too many digits 
to be of practical use. 

In the same way the results for the other symmetry sectors are derived. Here, 
(3P)U,n stands for the subspace of the 3P sector with unnatural parity consisting of 
those states with P =  (-l)L+l.  The lowest state with unnatural parity has L =  1 and 
antisymmetric spatial part, i.e. it belongs to the class of ortho systems, thus clarifying 
our choice of (3P)U,n. 

As already emphasised, the bounds of theorem 1 are primarily intended to be employed 
in the derivation of certain qualitative properties of atomic systems (Briet et a1 1987, 
Hogreve 1987). Here, as a further application of them, let us consider the problem of 
level ordering. The splitting of degenerate base levels under the influence of the 
electron-electron interaction is described by the well known rules of Hund (see Bethe 
and Jackiw 1980) which in our situation claim that 

(13) 
Although our bounds-neither in their simplified nor in their exact form-are sharp 
enough to prove the second inequality of (13), we can raise the first part of (13) to a 
theorem as follows. 

M L  - 22 405 152 737 744 M L  - 7942800465810 M L  - M L  - 2313 309487 104 
11-47537460297079 22-47537460297079 12- 21-47.537460297079. (11) 

&+<C<&. (12) 17 -- 
298< B2< -% 27 1 

K S < B l < %  

El(Z; 3S) =G E1(Z; 'P) < E 1 ( Z ;  'P). 
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Theorem 2. For all 2 5 = 1.6923 we have 

EYB(Z;  ' S ) G  E k B ( 2 ;  'P) 

where the upper and lower bounds are those of theorem 1. 

Proof: Inserting the respective values from table 3, the relation (14) becomes equivalent 
to G - J a ' ; T c a d  where for ZLZ;~,,,~ we have a=(&Z)' ,  b=-&Z+&, c =  
-&Z+&g, d = %-$, and which in turn is equivalent to the non-negativity of a 
second-order polynomial: 

p 2 z 2  + p , Z  + P O  3 0. (15) 

Computing the pi  explicitly it is easy to see that (15) holds for all 232&, and, 
inserting the respective bounds for 2 =Z Z&,,, (15) is satisfied for all 2 a 6. 
As a second example we want to apply our bounds to derive sufficient conditions on 
Z to guarantee the existence of bound states. A sufficient criterion for a wavefunction 
to represent a bound state of H, i.e. to be square integrable, is given if the corresponding 
energy does not belong to the essential spectrum of H. Here, we will deal with the 
threshold of the continuous part of a ( H ( 2 ) )  at E, (Z)  = -fZ' for the sector of natural 
parity, and E$$""(Z) = -&Z' for the unnatural parity sector. The fact that the restriction 
of H to different symmetry subspaces gives rise to different 'ionisation energies' E, (Z)  
and E Z : " ( Z )  implies the possible existence of (metastable) unnatural parity bound 
states with energies above E,(Z).  

The absorption point Zabs of the energy level E ( 2 )  into the continuum is defined 
by 

= Em(Zabs) (16) 

E""(ZYE) = E,(Zr;). (17) 

and upper bounds on Zabs guaranteeing bound states for Z 5 2;; are determined by 

Theorem 3. (i) For all 2 3 E z O . 9 6 3 4  the operator (1) has a discrete ground-state 
energy, and the associated ground state belongs to the IS symmetry sector. 

(ii) In the unnatural parity sector, H has a discrete ground-state energy (which is 
embedded in the continuum of the natural parity sector) for all 25%= 1.1395, and 
the associated ground state has 'P symmetry. 

Proof: Employing the respective bounds EYB from table 3, condition (17) becomes 
equivalent to a relation of the form (15). Calculating the p i  and estimating the lengthy 
expressions appropriately, the non-negativity of (15) holds for those 2 given above. 

With our bounds of theorem 1 and, more generally, with any lower bound functions 
derived from finite-dimensional Bazley-Fox projections, it is impossible to obtain 
necessary conditions for the existence of bound states, i.e. lower bounds 2:: to Zabs. 
This is due to the occurrence of crossings between the E functions and the base levels. 
From the results of Lieb (1984) it is known that H ( 2 )  cannot have bound states for 
2 s f. Hence, in view of theorem 3(i), the 2 range where the existence of a bound 
state is still not clear is given by the interval (4, 8). From a non-linear variational 
treatment Stillinger and Stillinger (1974) have derived the upper bound 2:; = 0.9538, 
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and more recently, in the context of the 1 / Z  expansion, Baker et al (1987) have 
obtained 2;; = 0.91 1 03 from a calculation based on 476 variational basic functions. 
Note that despite its simple form our rigorous bound is only about 5% higher. In 
particular our results are good enough to demonstrate rigorously the existence of H - ,  
at least in the sector of natural parity, whereas the standard variational upper bound 
EyB = -(Z -A)* would guarantee bound states only for Z z=f( l+ l/a) = 1.07. 

Since the work of Hill (1977) it is known that H -  has only one bound state in the 
natural parity subspace; a similar result holds in the unnatural parity sector (Grosse 
and Pittner 1983). Our bounds are not sharp enough to prove a discrete ground state 
with unnatural parity symmetry for H - .  Also the value 2;; = 1.03 from the non-linear 
variational calculus of Stillinger and Stillinger (1974) is not sufficient for this, whereas 
extrapolation of results from perturbation theory (Brandas and Goscinski 1972) gives 
evidence for the existence of an unnatural parity bound state until 2 = 0.9952. 

It is a great pleasure to thank all the members of the Centre de Physique ThCorique 
of the CNRS Marseille Luminy for their kind hospitality, and in particular P Duclos 
for stimulating discussions about this work. 
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